pandas.DataFrame.melt#

DataFrame.melt(id_vars=None, value_vars=None, var_name=None, value_name='value', col_level=None, ignore_index=True)[source]#

Unpivot DataFrame from wide to long format, optionally leaving identifiers set.

This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (id_vars), while all other columns, considered measured variables (value_vars), are “unpivoted” to the row axis, leaving just two non-identifier columns, ‘variable’ and ‘value’.

Parameters:
id_varsscalar, tuple, list, or ndarray, optional

Column(s) to use as identifier variables.

value_varsscalar, tuple, list, or ndarray, optional

Column(s) to unpivot. If not specified, uses all columns that are not set as id_vars.

var_namescalar, default None

Name to use for the ‘variable’ column. If None it uses frame.columns.name or ‘variable’.

value_namescalar, default ‘value’

Name to use for the ‘value’ column, can’t be an existing column label.

col_levelscalar, optional

If columns are a MultiIndex then use this level to melt.

ignore_indexbool, default True

If True, original index is ignored. If False, original index is retained. Index labels will be repeated as necessary.

Returns:
DataFrame

Unpivoted DataFrame.

See also

melt

Identical method.

pivot_table

Create a spreadsheet-style pivot table as a DataFrame.

DataFrame.pivot

Return reshaped DataFrame organized by given index / column values.

DataFrame.explode

Explode a DataFrame from list-like columns to long format.

Notes

Reference the user guide for more examples.

Examples

>>> df = pd.DataFrame(
...     {
...         "A": {0: "a", 1: "b", 2: "c"},
...         "B": {0: 1, 1: 3, 2: 5},
...         "C": {0: 2, 1: 4, 2: 6},
...     }
... )
>>> df
A  B  C
0  a  1  2
1  b  3  4
2  c  5  6
>>> df.melt(id_vars=["A"], value_vars=["B"])
A variable  value
0  a        B      1
1  b        B      3
2  c        B      5
>>> df.melt(id_vars=["A"], value_vars=["B", "C"])
A variable  value
0  a        B      1
1  b        B      3
2  c        B      5
3  a        C      2
4  b        C      4
5  c        C      6

The names of ‘variable’ and ‘value’ columns can be customized:

>>> df.melt(
...     id_vars=["A"],
...     value_vars=["B"],
...     var_name="myVarname",
...     value_name="myValname",
... )
A myVarname  myValname
0  a         B          1
1  b         B          3
2  c         B          5

Original index values can be kept around:

>>> df.melt(id_vars=["A"], value_vars=["B", "C"], ignore_index=False)
A variable  value
0  a        B      1
1  b        B      3
2  c        B      5
0  a        C      2
1  b        C      4
2  c        C      6

If you have multi-index columns:

>>> df.columns = [list("ABC"), list("DEF")]
>>> df
A  B  C
D  E  F
0  a  1  2
1  b  3  4
2  c  5  6
>>> df.melt(col_level=0, id_vars=["A"], value_vars=["B"])
A variable  value
0  a        B      1
1  b        B      3
2  c        B      5
>>> df.melt(id_vars=[("A", "D")], value_vars=[("B", "E")])
(A, D) variable_0 variable_1  value
0      a          B          E      1
1      b          B          E      3
2      c          B          E      5