pandas.tseries.offsets.MonthBegin#
- class pandas.tseries.offsets.MonthBegin#
DateOffset of one month at beginning.
MonthBegin goes to the next date which is a start of the month.
Attributes
n
(int, default 1) The number of months represented.
normalize
(bool, default False) Normalize start/end dates to midnight before generating date range.
See also
DateOffset
Standard kind of date increment.
Examples
>>> ts = pd.Timestamp(2022, 11, 30) >>> ts + pd.offsets.MonthBegin() Timestamp('2022-12-01 00:00:00')
>>> ts = pd.Timestamp(2022, 12, 1) >>> ts + pd.offsets.MonthBegin() Timestamp('2023-01-01 00:00:00')
If you want to get the start of the current month:
>>> ts = pd.Timestamp(2022, 12, 1) >>> pd.offsets.MonthBegin().rollback(ts) Timestamp('2022-12-01 00:00:00')
Attributes
base
Returns a copy of the calling offset object with n=1 and all other attributes equal.
Return a string representing the frequency.
Return a dict of extra parameters for the offset.
Return a string representing the base frequency.
Returns a integer of the total number of nanoseconds for fixed frequencies.
Return a string representing the base frequency.
Methods
copy
()Return a copy of the frequency.
is_month_end
(ts)Return boolean whether a timestamp occurs on the month end.
is_month_start
(ts)Return boolean whether a timestamp occurs on the month start.
is_on_offset
(dt)Return boolean whether a timestamp intersects with this frequency.
is_quarter_end
(ts)Return boolean whether a timestamp occurs on the quarter end.
is_quarter_start
(ts)Return boolean whether a timestamp occurs on the quarter start.
is_year_end
(ts)Return boolean whether a timestamp occurs on the year end.
is_year_start
(ts)Return boolean whether a timestamp occurs on the year start.
rollback
(dt)Roll provided date backward to next offset only if not on offset.
rollforward
(dt)Roll provided date forward to next offset only if not on offset.