pandas.CategoricalIndex.categories#

property CategoricalIndex.categories[source]#

The categories of this categorical.

Setting assigns new values to each category (effectively a rename of each individual category).

The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories.

Raises:
ValueError

If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories

See also

rename_categories

Rename categories.

reorder_categories

Reorder categories.

add_categories

Add new categories.

remove_categories

Remove the specified categories.

remove_unused_categories

Remove categories which are not used.

set_categories

Set the categories to the specified ones.

Examples

For pandas.Series:

>>> ser = pd.Series(["a", "b", "c", "a"], dtype="category")
>>> ser.cat.categories
Index(['a', 'b', 'c'], dtype='object')
>>> raw_cat = pd.Categorical(["a", "b", "c", "a"], categories=["b", "c", "d"])
>>> ser = pd.Series(raw_cat)
>>> ser.cat.categories
Index(['b', 'c', 'd'], dtype='object')

For pandas.Categorical:

>>> cat = pd.Categorical(["a", "b"], ordered=True)
>>> cat.categories
Index(['a', 'b'], dtype='object')

For pandas.CategoricalIndex:

>>> ci = pd.CategoricalIndex(["a", "c", "b", "a", "c", "b"])
>>> ci.categories
Index(['a', 'b', 'c'], dtype='object')
>>> ci = pd.CategoricalIndex(["a", "c"], categories=["c", "b", "a"])
>>> ci.categories
Index(['c', 'b', 'a'], dtype='object')