pandas.CategoricalIndex.map#
- CategoricalIndex.map(mapper, na_action=None)[source]#
Map values using input an input mapping or function.
Maps the values (their categories, not the codes) of the index to new categories. If the mapping correspondence is one-to-one the result is a
CategoricalIndex
which has the same order property as the original, otherwise anIndex
is returned.If a dict or
Series
is used any unmapped category is mapped to NaN. Note that if this happens anIndex
will be returned.- Parameters:
- mapperfunction, dict, or Series
Mapping correspondence.
- na_action{None, ‘ignore’}, default ‘ignore’
If ‘ignore’, propagate NaN values, without passing them to the mapping correspondence.
- Returns:
- pandas.CategoricalIndex or pandas.Index
Mapped index.
See also
Index.map
Apply a mapping correspondence on an
Index
.Series.map
Apply a mapping correspondence on a
Series
.Series.apply
Apply more complex functions on a
Series
.
Examples
>>> idx = pd.CategoricalIndex(["a", "b", "c"]) >>> idx CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category') >>> idx.map(lambda x: x.upper()) CategoricalIndex(['A', 'B', 'C'], categories=['A', 'B', 'C'], ordered=False, dtype='category') >>> idx.map({"a": "first", "b": "second", "c": "third"}) CategoricalIndex(['first', 'second', 'third'], categories=['first', 'second', 'third'], ordered=False, dtype='category')
If the mapping is one-to-one the ordering of the categories is preserved:
>>> idx = pd.CategoricalIndex(["a", "b", "c"], ordered=True) >>> idx CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=True, dtype='category') >>> idx.map({"a": 3, "b": 2, "c": 1}) CategoricalIndex([3, 2, 1], categories=[3, 2, 1], ordered=True, dtype='category')
If the mapping is not one-to-one an
Index
is returned:>>> idx.map({"a": "first", "b": "second", "c": "first"}) Index(['first', 'second', 'first'], dtype='object')
If a dict is used, all unmapped categories are mapped to NaN and the result is an
Index
:>>> idx.map({"a": "first", "b": "second"}) Index(['first', 'second', nan], dtype='object')