pandas.Index.argmin#

Index.argmin(axis=None, skipna=True, *args, **kwargs)[source]#

Return int position of the smallest value in the Index.

If the minimum is achieved in multiple locations, the first row position is returned.

Parameters:
axisNone

Unused. Parameter needed for compatibility with DataFrame.

skipnabool, default True

Exclude NA/null values. If the entire Series is NA, or if skipna=False and there is an NA value, this method will raise a ValueError.

*args, **kwargs

Additional arguments and keywords for compatibility with NumPy.

Returns:
int

Row position of the minimum value.

See also

Series.argmin

Return position of the minimum value.

Series.argmax

Return position of the maximum value.

numpy.ndarray.argmin

Equivalent method for numpy arrays.

Series.idxmin

Return index label of the minimum values.

Series.idxmax

Return index label of the maximum values.

Examples

Consider dataset containing cereal calories

>>> idx = pd.Index([100.0, 110.0, 120.0, 110.0])
>>> idx
Index([100.0, 110.0, 120.0, 110.0], dtype='float64')
>>> idx.argmax()
np.int64(2)
>>> idx.argmin()
np.int64(0)

The maximum cereal calories is the third element and the minimum cereal calories is the first element, since index is zero-indexed.