pandas.Series.argmin#
- Series.argmin(axis=None, skipna=True, *args, **kwargs)[source]#
- Return int position of the smallest value in the Series. - If the minimum is achieved in multiple locations, the first row position is returned. - Parameters:
- axis{None}
- Unused. Parameter needed for compatibility with DataFrame. 
- skipnabool, default True
- Exclude NA/null values. If the entire Series is NA, or if - skipna=Falseand there is an NA value, this method will raise a- ValueError.
- *args, **kwargs
- Additional arguments and keywords for compatibility with NumPy. 
 
- Returns:
- int
- Row position of the minimum value. 
 
 - See also - Series.argmin
- Return position of the minimum value. 
- Series.argmax
- Return position of the maximum value. 
- numpy.ndarray.argmin
- Equivalent method for numpy arrays. 
- Series.idxmax
- Return index label of the maximum values. 
- Series.idxmin
- Return index label of the minimum values. 
 - Examples - Consider dataset containing cereal calories - >>> s = pd.Series( ... [100.0, 110.0, 120.0, 110.0], ... index=[ ... "Corn Flakes", ... "Almond Delight", ... "Cinnamon Toast Crunch", ... "Cocoa Puff", ... ], ... ) >>> s Corn Flakes 100.0 Almond Delight 110.0 Cinnamon Toast Crunch 120.0 Cocoa Puff 110.0 dtype: float64 - >>> s.argmax() np.int64(2) >>> s.argmin() np.int64(0) - The maximum cereal calories is the third element and the minimum cereal calories is the first element, since series is zero-indexed.