pandas.Series.cat#
- Series.cat()[source]#
Accessor object for categorical properties of the Series values.
This accessor provides methods and properties to interact with the underlying categorical data, such as accessing categories, renaming them, reordering, or adding and removing categories.
- Parameters:
- dataSeries or CategoricalIndex
The object to which the categorical accessor is attached.
See also
Series.dtAccessor object for datetimelike properties of the Series values.
Series.sparseAccessor for sparse matrix data types.
Examples
>>> s = pd.Series(list("abbccc")).astype("category") >>> s 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, str): ['a', 'b', 'c']
>>> s.cat.categories Index(['a', 'b', 'c'], dtype='str')
>>> s.cat.rename_categories(list("cba")) 0 c 1 b 2 b 3 a 4 a 5 a dtype: category Categories (3, str): ['c', 'b', 'a']
>>> s.cat.reorder_categories(list("cba")) 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, str): ['c', 'b', 'a']
>>> s.cat.add_categories(["d", "e"]) 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (5, str): ['a', 'b', 'c', 'd', 'e']
>>> s.cat.remove_categories(["a", "c"]) 0 NaN 1 b 2 b 3 NaN 4 NaN 5 NaN dtype: category Categories (1, str): ['b']
>>> s1 = s.cat.add_categories(["d", "e"]) >>> s1.cat.remove_unused_categories() 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, str): ['a', 'b', 'c']
>>> s.cat.set_categories(list("abcde")) 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (5, str): ['a', 'b', 'c', 'd', 'e']
>>> s.cat.as_ordered() 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, str): ['a' < 'b' < 'c']
>>> s.cat.as_unordered() 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, str): ['a', 'b', 'c']