pandas.Series.to_pickle#
- Series.to_pickle(path, *, compression='infer', protocol=5, storage_options=None)[source]#
- Pickle (serialize) object to file. - Parameters:
- pathstr, path object, or file-like object
- String, path object (implementing - os.PathLike[str]), or file-like object implementing a binary- write()function. File path where the pickled object will be stored.
- compressionstr or dict, default ‘infer’
- For on-the-fly compression of the output data. If ‘infer’ and ‘path’ is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, ‘.xz’, ‘.zst’, ‘.tar’, ‘.tar.gz’, ‘.tar.xz’ or ‘.tar.bz2’ (otherwise no compression). Set to - Nonefor no compression. Can also be a dict with key- 'method'set to one of {- 'zip',- 'gzip',- 'bz2',- 'zstd',- 'xz',- 'tar'} and other key-value pairs are forwarded to- zipfile.ZipFile,- gzip.GzipFile,- bz2.BZ2File,- zstandard.ZstdCompressor,- lzma.LZMAFileor- tarfile.TarFile, respectively. As an example, the following could be passed for faster compression and to create a reproducible gzip archive:- compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}.- Added in version 1.5.0: Added support for .tar files. 
- protocolint
- Int which indicates which protocol should be used by the pickler, default HIGHEST_PROTOCOL (see [1] paragraph 12.1.2). The possible values are 0, 1, 2, 3, 4, 5. A negative value for the protocol parameter is equivalent to setting its value to HIGHEST_PROTOCOL. 
- storage_optionsdict, optional
- Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to - urllib.request.Requestas header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded to- fsspec.open. Please see- fsspecand- urllibfor more details, and for more examples on storage options refer here.
 
 - See also - read_pickle
- Load pickled pandas object (or any object) from file. 
- DataFrame.to_hdf
- Write DataFrame to an HDF5 file. 
- DataFrame.to_sql
- Write DataFrame to a SQL database. 
- DataFrame.to_parquet
- Write a DataFrame to the binary parquet format. 
 - Examples - >>> original_df = pd.DataFrame( ... {"foo": range(5), "bar": range(5, 10)} ... ) >>> original_df foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 >>> original_df.to_pickle("./dummy.pkl") - >>> unpickled_df = pd.read_pickle("./dummy.pkl") >>> unpickled_df foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9