pandas.Series.plot.barh#
- Series.plot.barh(x=None, y=None, color=None, **kwargs)[source]#
- Make a horizontal bar plot. - A horizontal bar plot is a plot that presents quantitative data with rectangular bars with lengths proportional to the values that they represent. A bar plot shows comparisons among discrete categories. One axis of the plot shows the specific categories being compared, and the other axis represents a measured value. - Parameters:
- xlabel or position, optional
- Allows plotting of one column versus another. If not specified, the index of the DataFrame is used. 
- ylabel or position, optional
- Allows plotting of one column versus another. If not specified, all numerical columns are used. 
- colorstr, array-like, or dict, optional
- The color for each of the DataFrame’s columns. Possible values are: - A single color string referred to by name, RGB or RGBA code, for instance ‘red’ or ‘#a98d19’. 
- A sequence of color strings referred to by name, RGB or RGBA code, which will be used for each column recursively. For instance [‘green’,’yellow’] each column’s bar will be filled in green or yellow, alternatively. If there is only a single column to be plotted, then only the first color from the color list will be used. 
- A dict of the form {column name : color}, so that each column will be colored accordingly. For example, if your columns are called a and b, then passing {‘a’: ‘green’, ‘b’: ‘red’} will color bars for column a in green and bars for column b in red. 
 
- **kwargs
- Additional keyword arguments are documented in - DataFrame.plot().
 
- Returns:
- matplotlib.axes.Axes or np.ndarray of them
- An ndarray is returned with one - matplotlib.axes.Axesper column when- subplots=True.
 
 - See also - DataFrame.plot.bar
- Vertical bar plot. 
- DataFrame.plot
- Make plots of DataFrame using matplotlib. 
- matplotlib.axes.Axes.bar
- Plot a vertical bar plot using matplotlib. 
 - Examples - Basic example - >>> df = pd.DataFrame({"lab": ["A", "B", "C"], "val": [10, 30, 20]}) >>> ax = df.plot.barh(x="lab", y="val")   - Plot a whole DataFrame to a horizontal bar plot - >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = [ ... "snail", ... "pig", ... "elephant", ... "rabbit", ... "giraffe", ... "coyote", ... "horse", ... ] >>> df = pd.DataFrame({"speed": speed, "lifespan": lifespan}, index=index) >>> ax = df.plot.barh()   - Plot stacked barh charts for the DataFrame - >>> ax = df.plot.barh(stacked=True)   - We can specify colors for each column - >>> ax = df.plot.barh(color={"speed": "red", "lifespan": "green"})   - Plot a column of the DataFrame to a horizontal bar plot - >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = [ ... "snail", ... "pig", ... "elephant", ... "rabbit", ... "giraffe", ... "coyote", ... "horse", ... ] >>> df = pd.DataFrame({"speed": speed, "lifespan": lifespan}, index=index) >>> ax = df.plot.barh(y="speed")   - Plot DataFrame versus the desired column - >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = [ ... "snail", ... "pig", ... "elephant", ... "rabbit", ... "giraffe", ... "coyote", ... "horse", ... ] >>> df = pd.DataFrame({"speed": speed, "lifespan": lifespan}, index=index) >>> ax = df.plot.barh(x="lifespan") 