pandas.Series.std#
- Series.std(*, axis=None, skipna=True, ddof=1, numeric_only=False, **kwargs)[source]#
Return sample standard deviation.
Normalized by N-1 by default. This can be changed using the ddof argument.
- Parameters:
- axis{index (0)}
This parameter is unused and defaults to 0.
- skipnabool, default True
Exclude NA/null values. If Series is NA, the result will be NA.
- ddofint, default 1
Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.
- numeric_onlybool, default False
Not implemented for Series.
- **kwargs
Additional keywords have no effect but might be accepted for compatibility with NumPy.
- Returns:
- scalar
Standard deviation over all values in the Series.
See also
numpy.stdCompute the standard deviation along the specified axis.
Series.varReturn unbiased variance over requested axis.
Series.semReturn unbiased standard error of the mean over requested axis.
Series.meanReturn the mean of the values over the requested axis.
Series.medianReturn the median of the values over the requested axis.
Series.modeReturn the mode(s) of the Series.
Examples
>>> s = pd.Series([1, 2, 3]) >>> s.std() 1.0
Alternatively,
ddof=0can be set to normalize by $N$ instead of $N-1$:>>> s.std(ddof=0) 0.816496580927726