pandas.PeriodIndex.to_timestamp#
- PeriodIndex.to_timestamp(freq=None, how='start')[source]#
Cast to DatetimeArray/Index.
- Parameters:
- freqstr or DateOffset, optional
Target frequency. The default is ‘D’ for week or longer, ‘s’ otherwise.
- how{‘s’, ‘e’, ‘start’, ‘end’}
Whether to use the start or end of the time period being converted.
- Returns:
- DatetimeArray/Index
Timestamp representation of given Period-like object.
See also
PeriodIndex.day
The days of the period.
PeriodIndex.from_fields
Construct a PeriodIndex from fields (year, month, day, etc.).
PeriodIndex.from_ordinals
Construct a PeriodIndex from ordinals.
PeriodIndex.hour
The hour of the period.
PeriodIndex.minute
The minute of the period.
PeriodIndex.month
The month as January=1, December=12.
PeriodIndex.second
The second of the period.
PeriodIndex.year
The year of the period.
Examples
>>> idx = pd.PeriodIndex(["2023-01", "2023-02", "2023-03"], freq="M") >>> idx.to_timestamp() DatetimeIndex(['2023-01-01', '2023-02-01', '2023-03-01'], dtype='datetime64[ns]', freq='MS')
The frequency will not be inferred if the index contains less than three elements, or if the values of index are not strictly monotonic:
>>> idx = pd.PeriodIndex(["2023-01", "2023-02"], freq="M") >>> idx.to_timestamp() DatetimeIndex(['2023-01-01', '2023-02-01'], dtype='datetime64[ns]', freq=None)
>>> idx = pd.PeriodIndex( ... ["2023-01", "2023-02", "2023-02", "2023-03"], freq="2M" ... ) >>> idx.to_timestamp() DatetimeIndex(['2023-01-01', '2023-02-01', '2023-02-01', '2023-03-01'], dtype='datetime64[ns]', freq=None)