pandas.Series.abs#
- Series.abs()[source]#
Return a Series/DataFrame with absolute numeric value of each element.
This function only applies to elements that are all numeric.
- Returns:
- abs
Series/DataFrame containing the absolute value of each element.
See also
numpy.absolute
Calculate the absolute value element-wise.
Notes
For
complex
inputs,1.2 + 1j
, the absolute value is \(\sqrt{ a^2 + b^2 }\).Examples
Absolute numeric values in a Series.
>>> s = pd.Series([-1.10, 2, -3.33, 4]) >>> s.abs() 0 1.10 1 2.00 2 3.33 3 4.00 dtype: float64
Absolute numeric values in a Series with complex numbers.
>>> s = pd.Series([1.2 + 1j]) >>> s.abs() 0 1.56205 dtype: float64
Absolute numeric values in a Series with a Timedelta element.
>>> s = pd.Series([pd.Timedelta("1 days")]) >>> s.abs() 0 1 days dtype: timedelta64[ns]
Select rows with data closest to certain value using argsort (from StackOverflow).
>>> df = pd.DataFrame( ... {"a": [4, 5, 6, 7], "b": [10, 20, 30, 40], "c": [100, 50, -30, -50]} ... ) >>> df a b c 0 4 10 100 1 5 20 50 2 6 30 -30 3 7 40 -50 >>> df.loc[(df.c - 43).abs().argsort()] a b c 1 5 20 50 0 4 10 100 2 6 30 -30 3 7 40 -50