pandas.Series.sparse.from_coo#
- classmethod Series.sparse.from_coo(A, dense_index=False)[source]#
Create a Series with sparse values from a scipy.sparse.coo_matrix.
This method takes a
scipy.sparse.coo_matrix
(coordinate format) as input and returns a pandasSeries
where the non-zero elements are represented as sparse values. The index of the Series can either include only the coordinates of non-zero elements (default behavior) or the full sorted set of coordinates from the matrix ifdense_index
is set to True.- Parameters:
- Ascipy.sparse.coo_matrix
The sparse matrix in coordinate format from which the sparse Series will be created.
- dense_indexbool, default False
If False (default), the index consists of only the coords of the non-null entries of the original coo_matrix. If True, the index consists of the full sorted (row, col) coordinates of the coo_matrix.
- Returns:
- sSeries
A Series with sparse values.
See also
DataFrame.sparse.from_spmatrix
Create a new DataFrame from a scipy sparse matrix.
scipy.sparse.coo_matrix
A sparse matrix in COOrdinate format.
Examples
>>> from scipy import sparse
>>> A = sparse.coo_matrix( ... ([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])), shape=(3, 4) ... ) >>> A <COOrdinate sparse matrix of dtype 'float64' with 3 stored elements and shape (3, 4)>
>>> A.todense() matrix([[0., 0., 1., 2.], [3., 0., 0., 0.], [0., 0., 0., 0.]])
>>> ss = pd.Series.sparse.from_coo(A) >>> ss 0 2 1.0 3 2.0 1 0 3.0 dtype: Sparse[float64, nan]