pandas.Series.dt.to_pydatetime#
- Series.dt.to_pydatetime()[source]#
Return the data as a Series of
datetime.datetime
objects.Timezone information is retained if present.
Warning
Python’s datetime uses microsecond resolution, which is lower than pandas (nanosecond). The values are truncated.
- Returns:
- numpy.ndarray
Object dtype array containing native Python datetime objects.
See also
datetime.datetime
Standard library value for a datetime.
Examples
>>> s = pd.Series(pd.date_range("20180310", periods=2)) >>> s 0 2018-03-10 1 2018-03-11 dtype: datetime64[ns]
>>> s.dt.to_pydatetime() 0 2018-03-10 00:00:00 1 2018-03-11 00:00:00 dtype: object
pandas’ nanosecond precision is truncated to microseconds.
>>> s = pd.Series(pd.date_range("20180310", periods=2, freq="ns")) >>> s 0 2018-03-10 00:00:00.000000000 1 2018-03-10 00:00:00.000000001 dtype: datetime64[ns]
>>> s.dt.to_pydatetime() 0 2018-03-10 00:00:00 1 2018-03-10 00:00:00 dtype: object