pandas.Series.median#
- Series.median(*, axis=0, skipna=True, numeric_only=False, **kwargs)[source]#
Return the median of the values over the requested axis.
- Parameters:
- axis{index (0)}
Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.
For DataFrames, specifying
axis=None
will apply the aggregation across both axes.Added in version 2.0.0.
- skipnabool, default True
Exclude NA/null values when computing the result.
- numeric_onlybool, default False
Include only float, int, boolean columns.
- **kwargs
Additional keyword arguments to be passed to the function.
- Returns:
- scalar or Series (if level specified)
Median of the values for the requested axis.
See also
numpy.median
Equivalent numpy function for computing median.
Series.sum
Sum of the values.
Series.median
Median of the values.
Series.std
Standard deviation of the values.
Series.var
Variance of the values.
Series.min
Minimum value.
Series.max
Maximum value.
Examples
>>> s = pd.Series([1, 2, 3]) >>> s.median() 2.0
With a DataFrame
>>> df = pd.DataFrame({"a": [1, 2], "b": [2, 3]}, index=["tiger", "zebra"]) >>> df a b tiger 1 2 zebra 2 3 >>> df.median() a 1.5 b 2.5 dtype: float64
Using axis=1
>>> df.median(axis=1) tiger 1.5 zebra 2.5 dtype: float64
In this case, numeric_only should be set to True to avoid getting an error.
>>> df = pd.DataFrame({"a": [1, 2], "b": ["T", "Z"]}, index=["tiger", "zebra"]) >>> df.median(numeric_only=True) a 1.5 dtype: float64