pandas.DataFrame.__dataframe__#
- DataFrame.__dataframe__(nan_as_null=False, allow_copy=True)[source]#
Return the dataframe interchange object implementing the interchange protocol.
Note
For new development, we highly recommend using the Arrow C Data Interface alongside the Arrow PyCapsule Interface instead of the interchange protocol
Warning
Due to severe implementation issues, we recommend only considering using the interchange protocol in the following cases:
converting to pandas: for pandas >= 2.0.3
converting from pandas: for pandas >= 3.0.0
- Parameters:
- nan_as_nullbool, default False
nan_as_null is DEPRECATED and has no effect. Please avoid using it; it will be removed in a future release.
- allow_copybool, default True
Whether to allow memory copying when exporting. If set to False it would cause non-zero-copy exports to fail.
- Returns:
- DataFrame interchange object
The object which consuming library can use to ingress the dataframe.
See also
DataFrame.from_records
Constructor from tuples, also record arrays.
DataFrame.from_dict
From dicts of Series, arrays, or dicts.
Notes
Details on the interchange protocol: https://data-apis.org/dataframe-protocol/latest/index.html
Examples
>>> df_not_necessarily_pandas = pd.DataFrame({"A": [1, 2], "B": [3, 4]}) >>> interchange_object = df_not_necessarily_pandas.__dataframe__() >>> interchange_object.column_names() Index(['A', 'B'], dtype='object') >>> df_pandas = pd.api.interchange.from_dataframe( ... interchange_object.select_columns_by_name(["A"]) ... ) >>> df_pandas A 0 1 1 2
These methods (
column_names
,select_columns_by_name
) should work for any dataframe library which implements the interchange protocol.