pandas.DataFrame.sum#
- DataFrame.sum(*, axis=0, skipna=True, numeric_only=False, min_count=0, **kwargs)[source]#
- Return the sum of the values over the requested axis. - This is equivalent to the method - numpy.sum.- Parameters:
- axis{index (0), columns (1)}
- Axis for the function to be applied on. For Series this parameter is unused and defaults to 0. - Warning - The behavior of DataFrame.sum with - axis=Noneis deprecated, in a future version this will reduce over both axes and return a scalar To retain the old behavior, pass axis=0 (or do not pass axis).- Added in version 2.0.0. 
- skipnabool, default True
- Exclude NA/null values when computing the result. 
- numeric_onlybool, default False
- Include only float, int, boolean columns. Not implemented for Series. 
- min_countint, default 0
- The required number of valid values to perform the operation. If fewer than - min_countnon-NA values are present the result will be NA.
- **kwargs
- Additional keyword arguments to be passed to the function. 
 
- Returns:
- Series or scalar
- Sum over requested axis. 
 
 - See also - Series.sum
- Return the sum over Series values. 
- DataFrame.mean
- Return the mean of the values over the requested axis. 
- DataFrame.median
- Return the median of the values over the requested axis. 
- DataFrame.mode
- Get the mode(s) of each element along the requested axis. 
- DataFrame.std
- Return the standard deviation of the values over the requested axis. 
 - Examples - >>> idx = pd.MultiIndex.from_arrays( ... [["warm", "warm", "cold", "cold"], ["dog", "falcon", "fish", "spider"]], ... names=["blooded", "animal"], ... ) >>> s = pd.Series([4, 2, 0, 8], name="legs", index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64 - >>> s.sum() 14 - By default, the sum of an empty or all-NA Series is - 0.- >>> pd.Series([], dtype="float64").sum() # min_count=0 is the default 0.0 - This can be controlled with the - min_countparameter. For example, if you’d like the sum of an empty series to be NaN, pass- min_count=1.- >>> pd.Series([], dtype="float64").sum(min_count=1) nan - Thanks to the - skipnaparameter,- min_counthandles all-NA and empty series identically.- >>> pd.Series([np.nan]).sum() 0.0 - >>> pd.Series([np.nan]).sum(min_count=1) nan