pandas.DataFrame.isin#
- DataFrame.isin(values)[source]#
- Whether each element in the DataFrame is contained in values. - Parameters:
- valuesiterable, Series, DataFrame or dict
- The result will only be true at a location if all the labels match. If values is a Series, that’s the index. If values is a dict, the keys must be the column names, which must match. If values is a DataFrame, then both the index and column labels must match. 
 
- Returns:
- DataFrame
- DataFrame of booleans showing whether each element in the DataFrame is contained in values. 
 
 - See also - DataFrame.eq
- Equality test for DataFrame. 
- Series.isin
- Equivalent method on Series. 
- Series.str.contains
- Test if pattern or regex is contained within a string of a Series or Index. 
 - Notes - __iter__is used (and not- __contains__) to iterate over values when checking if it contains the elements in DataFrame.- Examples - >>> df = pd.DataFrame( ... {"num_legs": [2, 4], "num_wings": [2, 0]}, index=["falcon", "dog"] ... ) >>> df num_legs num_wings falcon 2 2 dog 4 0 - When - valuesis a list check whether every value in the DataFrame is present in the list (which animals have 0 or 2 legs or wings)- >>> df.isin([0, 2]) num_legs num_wings falcon True True dog False True - To check if - valuesis not in the DataFrame, use the- ~operator:- >>> ~df.isin([0, 2]) num_legs num_wings falcon False False dog True False - When - valuesis a dict, we can pass values to check for each column separately:- >>> df.isin({"num_wings": [0, 3]}) num_legs num_wings falcon False False dog False True - When - valuesis a Series or DataFrame the index and column must match. Note that ‘falcon’ does not match based on the number of legs in other.- >>> other = pd.DataFrame( ... {"num_legs": [8, 3], "num_wings": [0, 2]}, index=["spider", "falcon"] ... ) >>> df.isin(other) num_legs num_wings falcon False True dog False False