pandas.DataFrame.astype#
- DataFrame.astype(dtype, copy=<no_default>, errors='raise')[source]#
- Cast a pandas object to a specified dtype - dtype.- This method allows the conversion of the data types of pandas objects, including DataFrames and Series, to the specified dtype. It supports casting entire objects to a single data type or applying different data types to individual columns using a mapping. - Parameters:
- dtypestr, data type, Series or Mapping of column name -> data type
- Use a str, numpy.dtype, pandas.ExtensionDtype or Python type to cast entire pandas object to the same type. Alternatively, use a mapping, e.g. {col: dtype, …}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame’s columns to column-specific types. 
- copybool, default False
- Return a copy when - copy=True(be very careful setting- copy=Falseas changes to values then may propagate to other pandas objects).- Note - The copy keyword will change behavior in pandas 3.0. Copy-on-Write will be enabled by default, which means that all methods with a copy keyword will use a lazy copy mechanism to defer the copy and ignore the copy keyword. The copy keyword will be removed in a future version of pandas. - You can already get the future behavior and improvements through enabling copy on write - pd.options.mode.copy_on_write = True- Deprecated since version 3.0.0. 
- errors{‘raise’, ‘ignore’}, default ‘raise’
- Control raising of exceptions on invalid data for provided dtype. - raise: allow exceptions to be raised
- ignore: suppress exceptions. On error return original object.
 
 
- Returns:
- same type as caller
- The pandas object casted to the specified - dtype.
 
 - See also - to_datetime
- Convert argument to datetime. 
- to_timedelta
- Convert argument to timedelta. 
- to_numeric
- Convert argument to a numeric type. 
- numpy.ndarray.astype
- Cast a numpy array to a specified type. 
 - Notes - Changed in version 2.0.0: Using - astypeto convert from timezone-naive dtype to timezone-aware dtype will raise an exception. Use- Series.dt.tz_localize()instead.- Examples - Create a DataFrame: - >>> d = {"col1": [1, 2], "col2": [3, 4]} >>> df = pd.DataFrame(data=d) >>> df.dtypes col1 int64 col2 int64 dtype: object - Cast all columns to int32: - >>> df.astype("int32").dtypes col1 int32 col2 int32 dtype: object - Cast col1 to int32 using a dictionary: - >>> df.astype({"col1": "int32"}).dtypes col1 int32 col2 int64 dtype: object - Create a series: - >>> ser = pd.Series([1, 2], dtype="int32") >>> ser 0 1 1 2 dtype: int32 >>> ser.astype("int64") 0 1 1 2 dtype: int64 - Convert to categorical type: - >>> ser.astype("category") 0 1 1 2 dtype: category Categories (2, int32): [1, 2] - Convert to ordered categorical type with custom ordering: - >>> from pandas.api.types import CategoricalDtype >>> cat_dtype = CategoricalDtype(categories=[2, 1], ordered=True) >>> ser.astype(cat_dtype) 0 1 1 2 dtype: category Categories (2, int64): [2 < 1] - Create a series of dates: - >>> ser_date = pd.Series(pd.date_range("20200101", periods=3)) >>> ser_date 0 2020-01-01 1 2020-01-02 2 2020-01-03 dtype: datetime64[ns]