pandas.DataFrame.to_period#
- DataFrame.to_period(freq=None, axis=0, copy=<no_default>)[source]#
Convert DataFrame from DatetimeIndex to PeriodIndex.
Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed). Either index of columns can be converted, depending on axis argument.
- Parameters:
- freqstr, default
Frequency of the PeriodIndex.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
The axis to convert (the index by default).
- copybool, default False
If False then underlying input data is not copied.
Note
The copy keyword will change behavior in pandas 3.0. Copy-on-Write will be enabled by default, which means that all methods with a copy keyword will use a lazy copy mechanism to defer the copy and ignore the copy keyword. The copy keyword will be removed in a future version of pandas.
You can already get the future behavior and improvements through enabling copy on write
pd.options.mode.copy_on_write = True
Deprecated since version 3.0.0.
- Returns:
- DataFrame
The DataFrame with the converted PeriodIndex.
See also
Series.to_period
Equivalent method for Series.
Series.dt.to_period
Convert DateTime column values.
Examples
>>> idx = pd.to_datetime( ... [ ... "2001-03-31 00:00:00", ... "2002-05-31 00:00:00", ... "2003-08-31 00:00:00", ... ] ... )
>>> idx DatetimeIndex(['2001-03-31', '2002-05-31', '2003-08-31'], dtype='datetime64[s]', freq=None)
>>> idx.to_period("M") PeriodIndex(['2001-03', '2002-05', '2003-08'], dtype='period[M]')
For the yearly frequency
>>> idx.to_period("Y") PeriodIndex(['2001', '2002', '2003'], dtype='period[Y-DEC]')