pandas.DataFrame.corrwith

DataFrame.corrwith(other, axis=0, drop=False, method='pearson', numeric_only=NoDefault.no_default)[source]

Compute pairwise correlation.

Pairwise correlation is computed between rows or columns of DataFrame with rows or columns of Series or DataFrame. DataFrames are first aligned along both axes before computing the correlations.

Parameters
otherDataFrame, Series

Object with which to compute correlations.

axis{0 or ‘index’, 1 or ‘columns’}, default 0

The axis to use. 0 or ‘index’ to compute column-wise, 1 or ‘columns’ for row-wise.

dropbool, default False

Drop missing indices from result.

method{‘pearson’, ‘kendall’, ‘spearman’} or callable

Method of correlation:

  • pearson : standard correlation coefficient

  • kendall : Kendall Tau correlation coefficient

  • spearman : Spearman rank correlation

  • callable: callable with input two 1d ndarrays

    and returning a float.

numeric_onlybool, default True

Include only float, int or boolean data.

New in version 1.5.0.

Deprecated since version 1.5.0: The default value of numeric_only will be False in a future version of pandas.

Returns
Series

Pairwise correlations.

See also

DataFrame.corr

Compute pairwise correlation of columns.

Examples

>>> index = ["a", "b", "c", "d", "e"]
>>> columns = ["one", "two", "three", "four"]
>>> df1 = pd.DataFrame(np.arange(20).reshape(5, 4), index=index, columns=columns)
>>> df2 = pd.DataFrame(np.arange(16).reshape(4, 4), index=index[:4], columns=columns)
>>> df1.corrwith(df2)
one      1.0
two      1.0
three    1.0
four     1.0
dtype: float64
>>> df2.corrwith(df1, axis=1)
a    1.0
b    1.0
c    1.0
d    1.0
e    NaN
dtype: float64