pandas.DataFrame.mean#
- DataFrame.mean(*, axis=0, skipna=True, numeric_only=False, **kwargs)[source]#
- Return the mean of the values over the requested axis. - Parameters:
- axis{index (0), columns (1)}
- Axis for the function to be applied on. For Series this parameter is unused and defaults to 0. - For DataFrames, specifying - axis=Nonewill apply the aggregation across both axes.- Added in version 2.0.0. 
- skipnabool, default True
- Exclude NA/null values when computing the result. 
- numeric_onlybool, default False
- Include only float, int, boolean columns. 
- **kwargs
- Additional keyword arguments to be passed to the function. 
 
- Returns:
- Series or scalar
- Value containing the calculation referenced in the description. 
 
 - See also - Series.sum
- Return the sum. 
- Series.min
- Return the minimum. 
- Series.max
- Return the maximum. 
- Series.idxmin
- Return the index of the minimum. 
- Series.idxmax
- Return the index of the maximum. 
- DataFrame.sum
- Return the sum over the requested axis. 
- DataFrame.min
- Return the minimum over the requested axis. 
- DataFrame.max
- Return the maximum over the requested axis. 
- DataFrame.idxmin
- Return the index of the minimum over the requested axis. 
- DataFrame.idxmax
- Return the index of the maximum over the requested axis. 
 - Examples - >>> s = pd.Series([1, 2, 3]) >>> s.mean() 2.0 - With a DataFrame - >>> df = pd.DataFrame({'a': [1, 2], 'b': [2, 3]}, index=['tiger', 'zebra']) >>> df a b tiger 1 2 zebra 2 3 >>> df.mean() a 1.5 b 2.5 dtype: float64 - Using axis=1 - >>> df.mean(axis=1) tiger 1.5 zebra 2.5 dtype: float64 - In this case, numeric_only should be set to True to avoid getting an error. - >>> df = pd.DataFrame({'a': [1, 2], 'b': ['T', 'Z']}, ... index=['tiger', 'zebra']) >>> df.mean(numeric_only=True) a 1.5 dtype: float64