pandas.DataFrame.isnull#
- DataFrame.isnull()[source]#
- DataFrame.isnull is an alias for DataFrame.isna. - Detect missing values. - Return a boolean same-sized object indicating if the values are NA. NA values, such as None or - numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings- ''or- numpy.infare not considered NA values.- Returns:
- Series/DataFrame
- Mask of bool values for each element in Series/DataFrame that indicates whether an element is an NA value. 
 
 - See also - Series.isnull
- Alias of isna. 
- DataFrame.isnull
- Alias of isna. 
- Series.notna
- Boolean inverse of isna. 
- DataFrame.notna
- Boolean inverse of isna. 
- Series.dropna
- Omit axes labels with missing values. 
- DataFrame.dropna
- Omit axes labels with missing values. 
- isna
- Top-level isna. 
 - Examples - Show which entries in a DataFrame are NA. - >>> df = pd.DataFrame( ... dict( ... age=[5, 6, np.nan], ... born=[ ... pd.NaT, ... pd.Timestamp("1939-05-27"), ... pd.Timestamp("1940-04-25"), ... ], ... name=["Alfred", "Batman", ""], ... toy=[None, "Batmobile", "Joker"], ... ) ... ) >>> df age born name toy 0 5.0 NaT Alfred NaN 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker - >>> df.isna() age born name toy 0 False True False True 1 False False False False 2 True False False False - Show which entries in a Series are NA. - >>> ser = pd.Series([5, 6, np.nan]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 - >>> ser.isna() 0 False 1 False 2 True dtype: bool