pandas.DataFrame.rmod#
- DataFrame.rmod(other, axis='columns', level=None, fill_value=None)[source]#
Get Modulo of dataframe and other, element-wise (binary operator rmod).
Equivalent to
other % dataframe, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, mod.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- Parameters:
- otherscalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
- Returns:
- DataFrame
Result of the arithmetic operation.
See also
DataFrame.addAdd DataFrames.
DataFrame.subSubtract DataFrames.
DataFrame.mulMultiply DataFrames.
DataFrame.divDivide DataFrames (float division).
DataFrame.truedivDivide DataFrames (float division).
DataFrame.floordivDivide DataFrames (integer division).
DataFrame.modCalculate modulo (remainder after division).
DataFrame.powCalculate exponential power.
Notes
Mismatched indices will be unioned together.
Examples
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360
Calculate modulo with a scalar.
>>> 1000 % df angles degrees circle NaN 280.0 triangle 1.0 100.0 rectangle 0.0 280.0
>>> df.rmod(1000) angles degrees circle NaN 280.0 triangle 1.0 100.0 rectangle 0.0 280.0
Calculate modulo with a list.
>>> [1000, 2000] % df angles degrees circle NaN 200.0 triangle 1.0 20.0 rectangle 0.0 200.0
>>> df.rmod([1000, 2000], axis='columns') angles degrees circle NaN 200.0 triangle 1.0 20.0 rectangle 0.0 200.0