pandas.tseries.offsets.BusinessHour#
- class pandas.tseries.offsets.BusinessHour#
DateOffset subclass representing possibly n business hours.
- Parameters:
- nint, default 1
The number of hours represented.
- normalizebool, default False
Normalize start/end dates to midnight before generating date range.
- startstr, time, or list of str/time, default “09:00”
Start time of your custom business hour in 24h format.
- endstr, time, or list of str/time, default: “17:00”
End time of your custom business hour in 24h format.
- offsettimedelta, default timedelta(0)
Time offset to apply.
Examples
You can use the parameter
nto represent a shift of n hours.>>> ts = pd.Timestamp(2022, 12, 9, 8) >>> ts + pd.offsets.BusinessHour(n=5) Timestamp('2022-12-09 14:00:00')
You can also change the start and the end of business hours.
>>> ts = pd.Timestamp(2022, 8, 5, 16) >>> ts + pd.offsets.BusinessHour(start="11:00") Timestamp('2022-08-08 11:00:00')
>>> from datetime import time as dt_time >>> ts = pd.Timestamp(2022, 8, 5, 22) >>> ts + pd.offsets.BusinessHour(end=dt_time(19, 0)) Timestamp('2022-08-08 10:00:00')
Passing the parameter
normalizeequal to True, you shift the start of the next business hour to midnight.>>> ts = pd.Timestamp(2022, 12, 9, 8) >>> ts + pd.offsets.BusinessHour(normalize=True) Timestamp('2022-12-09 00:00:00')
You can divide your business day hours into several parts.
>>> import datetime as dt >>> freq = pd.offsets.BusinessHour(start=["06:00", "10:00", "15:00"], ... end=["08:00", "12:00", "17:00"]) >>> pd.date_range(dt.datetime(2022, 12, 9), dt.datetime(2022, 12, 13), freq=freq) DatetimeIndex(['2022-12-09 06:00:00', '2022-12-09 07:00:00', '2022-12-09 10:00:00', '2022-12-09 11:00:00', '2022-12-09 15:00:00', '2022-12-09 16:00:00', '2022-12-12 06:00:00', '2022-12-12 07:00:00', '2022-12-12 10:00:00', '2022-12-12 11:00:00', '2022-12-12 15:00:00', '2022-12-12 16:00:00'], dtype='datetime64[ns]', freq='bh')
Attributes
baseReturns a copy of the calling offset object with n=1 and all other attributes equal.
Return a string representing the frequency.
Return a dict of extra parameters for the offset.
Return a string representing the base frequency.
Returns a integer of the total number of nanoseconds for fixed frequencies.
next_bdayUsed for moving to next business day.
offsetAlias for self._offset.
Return a string representing the base frequency.
Methods
copy()Return a copy of the frequency.
is_month_end(ts)Return boolean whether a timestamp occurs on the month end.
is_month_start(ts)Return boolean whether a timestamp occurs on the month start.
is_on_offset(dt)Return boolean whether a timestamp intersects with this frequency.
is_quarter_end(ts)Return boolean whether a timestamp occurs on the quarter end.
is_quarter_start(ts)Return boolean whether a timestamp occurs on the quarter start.
is_year_end(ts)Return boolean whether a timestamp occurs on the year end.
is_year_start(ts)Return boolean whether a timestamp occurs on the year start.
rollback(other)Roll provided date backward to next offset only if not on offset.
rollforward(other)Roll provided date forward to next offset only if not on offset.